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T ropical cyclone (TC) detection has vastly im-
proved over the days when meteorologists had
to watch their barometers and the skies for

prediction. The additional use of reconnaissance air-
craft, which began in 1944 (Anthes 1982), helped to
determine the structure and development of TCs. In
these aircraft, scientists look for evidence of a closed
low-level circulation center as well as persistent, or-
ganized thunderstorm activity (C. W. Landsea 2000,
personal communication). Later, visible and infrared
satellite images were also analyzed and a technique
was developed to classify tropical cloud systems
(Dvorak 1975, 1984). Currently, the National Hurri-
cane Center (NHC) uses a combination of the above
resources and several new resources, including the

SeaWinds scatterometer on the QuikSCAT satellite
(Katsaros et al. 2001).

Prior to the advent of scatterometer-based ocean
surface vector wind observations, routine surface
wind observations near a TC were found only by ships
of opportunity, buoys, reconnaissance airplane
dropsondes, or by coastline observation stations and
their Doppler radar systems (Tuttle and Gall 1999).
Satellite-borne scatterometers have been useful in
monitoring the location and intensity of TCs (Hsu
and Liu 1996; Katsaros et al. 2001). With the advent
of the European Remote Sensing satellite system
(ERS-1 and ERS-2), spatial and temporal resolution
of surface vector wind observations were much bet-
ter than before, but they were often impractical for
use as an early detection tool because of insufficient
sampling. The National Aeronautics and Space Ad-
ministration (NASA) Scatterometer (NSCAT) had
sufficient accuracy (Bourassa et al. 1997) and more
than double the coverage; however, NSCAT coverage
was still insufficient for this task. The SeaWinds
scatterometer has improved spatial coverage and tem-
poral resolution, and we will show that it can be used
as an early detection tool.

Earlier detection of TCs would be beneficial in
many areas. Earlier notice would give the public and
maritime interests more time to prepare for a poten-
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tial future threat. Earlier detection allows scientists
more time to plan research missions into storms [e.g.,
using the National Oceanic and Atmospheric Admin-
istration (NOAA) Gulfstream-IV jet aircraft]. In re-
search applications, it also allows the study of deter-
mining what promotes tropical cyclogenesis.

The detection algorithm described herein is based
on vorticity, which is different than what NHC uses
to define a TC. It is also different from the technique
used by Katsaros et al. (2001), which identifies closed
circulations in the scatterometer data. We chose our
technique because of the clear signal given by TCs in
average vorticity fields (e.g., Fig. 1). Our technique
does not incorporate persistence; NHC considers
persistence of organized convection in determining
if a TC exists. The statistics for how early a system is
detected before NHC classification are based on the
first time a signal is detected for a given system.

The thresholds for our detection algorithm are
based on observations during the 1999 Atlantic hur-
ricane season (see section titled Methodology). During
the time of QuikSCAT’s operation in 1999 the Atlan-
tic basin had 14 TCs (i.e., tropical depressions, tropi-
cal storms, and hurricanes). Based on the thresholds

derived from that season, 9 of the TCs had signals that
were detected an average of 26 h before the NHC clas-
sified the systems as depressions (see section titled
Results). In the case of TC Emily, the detection algo-
rithm found a vorticity signal 72 h before the NHC
classified the system as a TC. The other 5 TCs of that
season are not detected early for several reasons,
which will be described (see section titled Results).
The detection algorithm is implemented on two
datasets from the 2000 Atlantic hurricane season (see
section titled Application to the 2000 Atlantic Hurri-
cane Season): research-quality SeaWinds data and
near-real-time (<3-h delay) data. The technique found
signals for 7 of 18 TCs early for the research-quality
data, whereas it found signals for 3 of 12 TCs early
for the near-real-time data.

DATA. Scatterometers are unique among satellite
remote sensors in their ability to determine surface
wind speed and direction. Microwaves are scattered
by short water waves (capillary and ultra gravity
waves), which respond quickly to changes in winds.
The backscatter cross section (the fraction of trans-
mitted energy that returns to the satellite) is a func-

FIG. 1. Vorticity field example from ascending swaths on 19 Sep 1999. Vorticity (see background color scale) is
calculated from the scatterometer winds and then averaged over a 175 km by 175 km box within the swaths.
The gray regions represent areas where the average vorticity was not calculated. Hurricane Gert and Tropical
Storm Harvey give a clear signal in this field.
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tion of wind speed and wind direction relative to the
orientation of the scatterometer (Wentz and Smith
1999). Scatterometers operate by acquiring spatially
and temporally collocated measurements of
backscattered power from different viewing geom-
etries. The known relationship between the cross sec-
tion, wind velocity, and viewing geometry is then
used to estimate wind speed and direction (Naderi
et al. 1991; Wentz and Smith 1999). The SeaWinds
scatterometer uses a new radar design with two coni-
cally rotating pencil beams. These beams have inci-
dence angles of 46.25° and 54°. The inner beam has
a radius of 707 km, and the outer beam has a radius
of 900 km. Individual footprints are binned into 25
× 25 km cells, with up to 76 cells across the satellite
swath. This geometry results in relatively accurate ob-
servation between 200 and 600 km from nadir, with
the greatest uncertainties farthest away from nadir as
well as very close to nadir (Bourassa et al. 2002,  here-
after BLOS).

The relationships between the backscatter
cross section and satellite-relative wind direction,
for fixed wind speed and incidence angle, are sinu-
soidal (Naderi et al. 1991; Wentz and Smith 1999).
Consequently, the measure of misfit for the satellite
relative wind direction is sinusoidal in wind direc-
tion, which typically results in one to four local
minima (see Naderi et al. 1991 for detailed discus-
sion). Ideally, the best fit corresponds to the correct
direction. Noise in the observed backscatter cross
sections can alter the dependence of the misfit on
relative wind direction, and thereby cause incorrect
directions (also known as aliases) to be chosen. A
median filter is applied to each of the ambiguous
directions to determine which ambiguity is selected
(Shaffer et al. 1991). This process requires an initial
guess at the correct ambiguity, which is chosen from
the direction (of the two most likely ambiguities) that
is the closest match to the direction from the National
Centers for Environmental Prediction (NCEP) 2.5°
analysis. F. J. Wentz et al. (2001, personal commu-
nication) are experimenting with using scatterometer
data to provide the first guess field, which will
eliminate any biases added by using a separate
analysis.

Rain was not considered a serious problem for the
ERS or NSCAT scatterometers; however, rain can
have a substantial influence on SeaWinds observa-
tions. Rain influences radar returns through three
processes: backscatter off of the rain, attenuation of
the signal passing through the rain (Moore et al.
1999), and modification of the surface shape by rain-
drop impacts (Bliven et al. 1993; Sobieski and Bliven

1995; Sobieski et al. 1999). The influence of these
considerations on the accuracy of winds is a function
of scatterometer design. Rain has a greater influence
at large incidence angles (the beam interacts with
more rain), and for Ku band (NSCAT and SeaWinds)
rather than C band (ERS-1/2). Modeling these
problems is a concern of ongoing research. The rain
flag used in this study is the multidimensional
histogram (MUDH) flag (Huddleston and Stiles
2000), which is based on a probability space deter-
mined from 4 of 6 parameters that are sensitive to
rain. MUDH rain flags are in the research-quality
dataset available from the Physical Oceanography
Distributed Active Archive Center (PO.DAAC) at
the Jet Propulsion Laboratory as well as the near-
real-time data available through NOAA. Recent re-
search (Weissman et al. 2002) has shown that rain is
not as large a problem for the wind speeds we are
studying (i.e., 10–20 m s−1), unless in the presence of
intense rains typical of the core of mature TCs. A
modified rain flag, to be used in tropical systems, is
being developed.

Scatterometers actually determine “equivalent
neutral wind speeds” (Liu and Tang 1996; Verschell
et al. 1999) at a height of 10 m above the local mean
water surface, which differ from wind speeds that
would be measured by anemometers after adjustment
to a height of 10 m. These differences are a function
of atmospheric stratification, and are usually
<0.5 m s−1 (hereafter equivalent neutral winds will be
referred to as winds). Comparisons of the research-
quality QuikSCAT winds (QSCAT-1 algorithm) to
research vessel observations (BLOS) found the accu-
racy varied across the swath, with average uncertain-
ties in speed of 0.45 m s−1 and in direction of 5° for
correctly chosen ambiguities. Most of the errors in
ambiguity selection occurred for vector wind, |V|, less
than 4 m s−1, with a much smaller fraction for 4 < |V|
< 6 m s−1, a nearly negligible fraction for 8 m s−1 < |V|
< 12 m s−1, and a small, but nonnegligible fraction for
|V| > 12 m s−1 in the near-nadir part of the swath
(BLOS). The near-real-time data (which is also based
on the QSCAT-1 algorithm) has degraded accuracy
due to assumptions in the processing, and the accu-
racy of the product is yet to be determined.

METHODOLOGY. Tropical cyclones have areas of
positive near-surface vorticity ranging in size from
100 to 1000 km (Liu and Chan 1999; Ahrens 1998).
A vorticity-based detection tool should account for
the vorticity feature’s spatial extent and magnitude.
SeaWinds observations of the 1999 Atlantic hurricane
season are used to develop an objective technique for
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detection of TCs. This technique applies a mean vor-
ticity threshold over a given spatial area. Vorticity is
calculated within the SeaWinds swaths rather than
from a regularly gridded product (typically called a
level 3 product) in anticipation of using the technique
operationally with the near-real-time data. Ideally, the
existence of a TC could then be confirmed by the
NHC using satellite pictures of the area to look for
persistent, organized convection (i.e., the second half
of the definition of a TC).

The spatial scale for averaging vorticity is a 7-point
(175 km) by 7-point box centered on the swath points.
Individual vorticity values are calculated at the cen-
ter of each 2 by 2 box of wind observations by deter-
mining the circulation around the box and then di-
viding by the area. A minimum of 3 wind vectors out
of 4 in a square is required for the calculation (i.e., if
only 3 wind vectors exist, the square becomes a tri-
angle). This approach allows the vorticity to be cal-
culated at the same spatial density as the wind obser-
vations. All wind vector data are used in these
calculations (i.e., the rain-flagged data are not re-
moved). The inclusion of rain-flagged data likely
modifies the vorticity calculation; however, the noise
that results by including these data is small compared
to the signal. The average is then calculated from these
individual vorticity values. For an average to be made,
we choose to require that at least 44 (about 90%) of
the 49 vorticity observations exist (i.e., not be miss-
ing). This limits the technique’s ability in areas close
to land and on the edge of the swaths. The test then
has three components:

1) The average vorticity in the 7-point by 7-point box
must exceed the subjectively determined mini-
mum threshold vorticity (10 × 10−5 s−1).

2) The maximum rain-free wind speed within the
box must exceed a certain minimum wind speed
(10.0 m s−1).

3) The above two criteria must be met at least 25
times (i.e., approximately an area of 15,000 km2)
within a 350 km by 350 km area.

If the above criteria are met, then a potential TC is
identified. These threshold numbers are subjectively
determined using the research-quality SeaWinds data
for the 1999 Atlantic hurricane season (the near-real-
time product was not available at that time). Storms
from that season had to be directly “hit” by the
QuikSCAT swath (i.e., the storm center could not be
within 150 km of the edge of the swath) and their cen-
tral circulation pattern had to be clear of any landmasses
to be considered in our determination of a threshold.

Due to the small sample of swaths that fit these crite-
ria (40 swaths), the thresholds might be too large, but
are good for lowering the false alarm rate for 1999.

The domain used to develop this technique is the
Gulf of Mexico, the Caribbean Sea, and the tropical
Atlantic in the latitude band from 10° to 25°N (the
dashed region in Fig. 1). Points north and south of
this band are excluded because they are climatologi-
cally unfavorable origin points for TCs, and TCs did
not develop there in the 1999 season. Test runs far-
ther north are also susceptible to misidentifying
midlatitude frontal systems in the latter months of the
hurricane season.

RESULTS. Our vorticity-based test is applied for the
time QuikSCAT began operating (20 July) to the end
of the 1999 Atlantic hurricane season (30 November).
Of the around 1,100 swaths that passed through the
domain during that period, the test identified a total
of 96 swaths containing potential systems. Some
storms had multiple hits: for example, TC Emily
(Fig. 2a) had five hits. Most of the identified systems
are NHC-classified TCs (Table 1). The probability of
detection (POD)—the number of times a system was
detected early or during its existence divided by the
total number of times QuikSCAT passed over an ex-
isting system—was 0.82. The false alarm rate (FAR)—
the sum of the last four rows in Table 1 divided by the
sum of all rows in Table 1—was 0.33. The critical suc-
cess index (CSI)—the number of times systems were
detected early or during their existence divided by
sum of the number of detected systems (N = 96) and
the number of times QuikSCAT passed over a devel-
oped system and our algorithm did not detect it
(14)—was 0.58.

Of the 14 TCs that occurred in the 1999 season
during the time QuikSCAT was operating, 9 were
identified before the NHC classified them as tropical
depressions (Table 2). TC Lenny, in addition to be-
ing detected early, had the distinction of being the
only storm identified after the NHC classified it as
dissipated (listed as a closed circulation in Table 1).
The average early detection time for these 9 storms
was 26 h before the NHC classified them as TCs.

Tropical Cyclone Emily was identified 72 h before
the NHC classified it as a TC (the earliest detection
relative to NHC identification). The NHC classified
Emily as a TC at 2100 UTC on 24 August 1999 with a
center of circulation of 11.9°N, 54.0°W. At that time,
it was immediately named a tropical storm, based on
aircraft reconnaissance reports. QuikSCAT ’s image of
Emily (Fig. 2a), 72 h earlier, has a small tight circula-
tion centered at 11.5°N, 46.7°W. Around the circula-
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tion, some rain-free wind vectors have wind speeds
greater than 10 m s−1 and one had winds to tropical
storm force. The only negative factor for this system

was that the convection was highly variable [this and
all further convection information comes from NHC
(2001)].

FIG. 2. Sample of the systems that were detected early by our vorticity algorithm. The background color repre-
sents spatially averaged vorticity (as in Fig. 1.). Wind speed is proportional to reference arrow length given in
bottom left. Black (blue) arrows represent wind speeds less (greater) than 10.0 m s-1. Red arrows indicate data
flagged by the MUDH rain flag. (a) Emily, 72 h before the NHC classified it as a TC (2102 UTC 21 Aug 1999). (b)
Jose, 24 h before the NHC called it a TC (2103 UTC 16 Oct 1999). (c) Katrina, 45 h before the NHC called it a
TC (2334 UTC 26 Oct 1999). (d) Lenny, 34 h before the NHC called it a TC (1043 UTC 12 Nov 1999).
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Tropical Cyclone Jose was identified 24 h before
the NHC classified it as a TC. According to SeaWinds
(Fig. 2b), an elongated circulation existed in the lo-
cation where Jose would form. Thunderstorm activ-
ity was also getting better organized at this time. The
wind speeds around the system were relatively weak
(around 10 m s−1).

Tropical Cyclone Katrina was identified 45 h be-
fore its NHC classification as a TC. Katrina formed
from the remnants of an old frontal boundary, and at
the time of the satellite overpass (Fig. 2c), thunder-
storms were beginning to concentrate about a low
pressure area. According to QuikSCAT (Fig. 2c) a
weak low-level closed circulation was located near
11.5°N, 81.0°W. The strongest winds in the circula-
tion were located west of the center. In this region the
wind speeds were mostly above 10 m s−1 with one rain-
free speed above tropical storm force.

Tropical cyclone Lenny was identified 34 h before
the NHC classified it as a TC. It was identified as a
broad area of low pressure as early as 8 November,
but convection around the system was poorly orga-
nized. A reconnaissance aircraft investigated the sys-
tem on 12 November and did not find a well-defined
surface circulation center. The QuikSCAT data
(Fig. 2d) indicated that a circulation was forming
around 19°N, 82°W. In addition, rain-free wind
speeds indicated that winds of 10–15 m s−1 were lo-
cated in the north semicircle of the system.

Five other TCs [Floyd, Gert, Tropical Depression
(TD) 11, TD 12, and Irene] were identified by the
vorticity-based test before the NHC classified them as
TCs. Of the remaining five storms, only TC Harvey
was identified as soon as QuikSCAT passed over it
(i.e., the previous overpass of the system was before

the NHC classified it as a TC). The ques-
tion of how often QuikSCAT passes over
developing tropical systems is a key fac-
tor in determining the usefulness of
QuikSCAT in this application. During
the 1999 Atlantic hurricane season,
QuikSCAT passed over a tropical system
either once every 12 h (84% of the time),
once every 24 h (7%), or once every 36
h (9%). The inclusion of data from an-
other SeaWinds scatterometer, ex-
pected to be operational in mid-2003,
should provide more frequent coverage
of tropical systems.

Tropical cyclones Bret, Cindy, Den-
nis, and TD 7 were not identified by
QuikSCAT ’s first overpass of the sys-
tems. The reasons, made clear upon re-

viewing the SeaWinds data, are that either there was
interference with land, ambiguity selection errors
(often rain related), or the data suggested no closed
surface circulation in the area that the NHC said the
center existed. The vorticity-based test failed 3 times
to pick up TD 7 (the first time is shown in Fig. 3a),
and an examination of each swath revealed that each
of the factors listed above contributed to the lack of a
vorticity signal.

NHC-classified TC 52.1

Early detection of NHC-classified TCs 14.6

Closed circulations (possible TCs) 13.5

Tropical waves or ITCZ 12.5

Fronts 3.1

Other 4.2

TABLE 1. Classification of the systems that were detected by
the vorticity-based test for the 1999 Atlantic hurricane
season.

Reason an identified Percentage of systems
system passed the test  passing test (N = 96)

Emily 72

Floyd 13

Gert 20

TD 11 20

TD 12 6

Irene 3

Jose 24

Katrina 45

Lenny 34

TABLE 2. Early detection times (in hours)
relative to the NHC’s initial classification time
(i.e., the time when the system first reached
the criteria used by the NHC) for the 1999
Atlantic hurricane season during the time of
QuikSCAT’s operation. Five TCs were not
identified before the NHC’s initial classification
time.

Storm Relative detection time
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In addition to the TCs classified by the NHC, our
vorticity-based detection technique identified seven
separate closed circulations. In one case (Fig. 3b) the

winds on the south side of the system match the wind
definition for a TC given by NHC. Along with this
case, three other circulations could have been classi-

FIG. 3. As in Fig. 2, but for more complicated comparisons. (a) Tropical Depression Seven (0050 UTC 6 Sep
1999). The “L” represents the center of circulation, according to the NHC. This event did not pass our vortic-
ity-based test. (b) An area that was identified by the vorticity-based test and was not classified as a tropical de-
pression by the NHC (0745 UTC 3 Aug 1999). (c) Another area that passed the vorticity-based test and was not
classified as a TC by the NHC (0704 UTC 16 Oct 2000, near-real-time dataset). (d) A Meteosat image taken an
hour earlier before the system in (c). The dashed box indicates the area covered in (c).
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fied as tropical depressions depending on the orga-
nization of the thunderstorm activity in the system.
The other three circulations appear to be related to
frontogenesis because they occurred late in the sea-
son and because they developed north of 20°N.

Our results from the 1999 Atlantic hurricane sea-
son suggest that this vorticity-based technique should
perform well when applied to the 2000 season. In ad-
dition, the 2000 season offers an opportunity to test
the algorithm with a near-real-time dataset, which
could be used operationally by the NHC.

APPLICATION TO THE 2000 ATLANTIC
HURRICANE SEASON. Research-quality dataset.
The threshold values derived from the 1999 Atlantic
hurricane season were applied to the available data for
the 2000 season. Most of the identified systems have
closed circulations (i.e., they are among the first three
categories listed in Table 3). The detection technique
finds 7 of the TCs (Table 4) an average of 27 h before
the NHC classified them (17 h if you remove the out-
lier of TC Ernesto). The reduction in early warning
involved in the latter case is probably due to the in-
clusion of QuikSCAT data in the NHC’s determina-
tion of a closed circulation. Intergovernmental storm
discussions from the 2000 season frequently referred
to QuikSCAT’s use, especially in determining closed
circulations in the far eastern Atlantic: an area that is
not practical for the use of aircraft reconnaissance.
The POD for these data was 0.70, whereas the FAR
was 0.43. The CSI was 0.46, which is less than for the
1999 data because of the larger percentage of
misidentified fronts in the 2000 data.

Tropical cyclone Ernesto had the greatest early
detection time. Ninety-two hours before the NHC
classified it as a depression, a closed circulation ap-
peared in the far eastern Atlantic at approximately the
longitude Ernesto would have been in this stage of its
development [according to the storm reports archived
by the NHC (2001)]. However, the system was not
identified by our technique in the observations from
the next three overpasses. This is because this vortex
lost its organization before redeveloping farther west
in the Atlantic.

Eleven TCs were either identified after the NHC
classified them as depressions or were never identi-
fied. Four TCs (TD 4, Florence, Leslie, and Michael)
first developed outside of our domain. In each case,
the TC developed just off the east coast of Florida,
which is north of 25°N in the Atlantic. During the
development of this technique, this region was
avoided because of the number of fronts that made
their way through this area and the consequential in-
crease in the false alarm rate. TCs Gordon and Helene
(which existed first as TD 12, became an open wave,
and then regenerated) developed too close to the
Yucatan peninsula; consequently, our algorithm did
not identify them until after the NHC did. The sec-
ond QuikSCAT overpass identified TC Beryl after it
was classified by the NHC. The first overpass sug-
gested that no closed circulation existed in the area
identified by the NHC. The TC Chris was never iden-
tified for the same reason.

Our vorticity detection technique found six closed
circulations not classified as depressions by the NHC.
One case (Fig. 3c, shown as it was found by the

NHC-classified TC 45.9 28.9

Early detection of NHC-classified TCs 11.5 10.5

Closed circulations (possible TCs) 11.5 15.8

Tropical waves or ITCZ 14.8 15.8

Fronts 14.8 26.3

Other 1.6 2.6

TABLE 3. Classification of the systems that are identified by the vorticity-based test for the 2000
Atlantic hurricane season for the research-quality data and for the near-real-time data (starting
18 Aug 2000).

Percentage of systems Percentage of systems
Reason an identified passing test (research- that passed test (near-
system passed the test quality data N=61) real-time data N=38)
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near-real time dataset) was a circulation
that had just come off of Africa. A well-
defined circulation is apparent. An in-
frared satellite image taken close to the
time of the QuikSCAT swath (Fig. 3d)
shows that organized thunderstorm
activity appeared to be in the area.
However, this activity did not persist,
and the system quickly lost its circula-
tion. This is similar to the findings of
Carlson (1969) and Frank (1971) that
some systems can move off the west
coast of Africa with a closed circulation;
however, they usually decay within 12
to 24 h. Four other circulations (not
shown) were classified as potential TCs,
but their convection lacked persistence.
The other detected circulation was
likely associated with frontogenesis.

The detection algorithm did not
perform as well in the 2000 season as it
had in the 1999 season. The main rea-
son for this is the increased misiden-
tification of fronts in the data. There are a couple of
possible ways to correct this problem. A subjective
way would be to analyze detected systems visually
(i.e., with other synoptic datasets) to determine if a
front exists. A possible objective way would be to
analyze the deformation fields in the data, because
fronts are usually associated with areas of deforma-
tion. A reduction in the number of fronts identified
by the algorithm would make the results for the 2000
season comparable to the 1999 season.

Near-real-time dataset. The near-real-time dataset
used in this study became available on 18 August
2000. Compared to the research-quality data, a
smaller percentage of the identified systems are
closed circulations (any of the first three categories
in Table 3), and a larger percentage are termed
misidentified fronts. For this reason the FAR and CSI
became 0.61 and 0.33, respectively; whereas, the POD
was 0.68. Despite this increased inaccuracy, the vor-
ticity-based test still identifies 3 of the TCs early,
which is 2 less than found in the research-quality data
for the same time period. The reason they are not
identified by the near-real-time dataset is probably
due to assumptions made in the rapid processing that
lead to ambiguity selection errors. These errors
would propagate into the calculation of the vortic-
ity, which could reduce the value of the vorticity cal-
culated. A possible correction for this would be to
establish lower vorticity thresholds in the near-real-

time dataset; however, lower thresholds would in-
crease the false alarm rate.

Improved vorticity thresholds can be developed
with more near-real-time data. We did not receive
near-real-time data until 18 August 2000, and even
then, an error in retrieving the data caused us to miss
about 10% of the data. The effectiveness of this tech-
nique will improve as the quality of the near-real-time
data improves. For example, a new geophysical model
function (Ku 2000; F. Wentz and D. Smith 2000, per-
sonal communications) has been shown (BLOS) to be
more accurate than the model function (QSCAT-1)
used for the near-real-time product. Increases in pro-
cessing power should also reduce the negative impacts
of the assumptions used to produce the near-real-time
product. Furthermore, reductions in rain-induced
errors in speed (Weissman et al. 2002) and direction
(Stiles and Yueh 2002) will also improve the accuracy
of the scatterometer-derived vorticity.

SUMMARY. A vorticity-based detection algorithm
is developed to identify potential TCs in the Atlantic
hurricane basin. We use the research-quality data
from the 1999 hurricane season to subjectively deter-
mine vorticity and wind thresholds for that season.
The test is then applied to the 2000 hurricane season,
and it is also applied to near-real-time data.

The results show that the vorticity in scatter-
ometer winds can be used as an early detection tool
for potential TCs. When this technique is applied

TD 1 9 N/A

TD 2 20 N/A

Debby 13 13

Ernesto 92 —

Joyce 13 13

Keith 10 —

Nadine 35 35

TABLE 4. Early detection times (in hours) relative to the
NHC’s initial classification time for the 2000 Atlantic
hurricane season. For the research-quality data 11 TCs
were not identified before the NHC’s initial classification
time, and for the near-real-time data, 10 TCs were not
identified earlier.

Storm Relative detection time Relative detection
(research-quality data) time (near-real-

time data)
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to the research-quality dataset for the 2000 season,
the vorticity-based test finds vorticity signals for 7 of
18 TCs an average of 17 h before the NHC classified
them as TCs (27 h if we include the early detection
time for TC Ernesto, 92 h). When applied to the near-
real-time dataset, for a shorter period of data, the
vorticity-based test found signals for 3 of 12 TCs an
average of 20 h before the NHC classified them as
TCs. The inclusion of data from the future SeaWinds
scatterometer on the Global Change Observation
Mission (GCOM) satellite should provide more fre-
quent coverage of tropical systems, which could po-
tentially further improve the early detection of these
signals.

Scatterometer-based detection techniques should
not be the only approach for TC detection. The
scatterometer-based technique is sometimes much
better than conventional approaches; however, there
are cases where the conventional methods are better.
Our intent is to provide an objective technique that
can be used operationally to supplement the conven-
tional techniques. The technique does not perform
well near the edge of the QuikSCAT swaths or near
landmasses. However, if a system is close to land, it
should be easy to identify by conventional methods.
Furthermore, this technique needs to be used in con-
junction with visual inspection or additional tests to
eliminate false alarms.

ACKNOWLEDGMENTS. The research-quality data
used for this report were obtained from the NASA Physi-
cal Oceanography Distributed Active Archive Center at
the Jet Propulsion Laboratory, California Institute of
Technology. Gene Legg and Paul Chang at NOAA/
NESDIS provided the near-real-time data. Thanks to
Jiraporn Whalley and Stacey Campbell for their help in
automating retrieval and processing of that data. Thanks
also to Drs. Kristina Katsaros, Jack Beven, and Chris
Landsea for their helpful comments. NASA support came
through funding for the Ocean Vector Wind Science
Team. The Center for Ocean–Atmospheric Prediction
Studies receives its base funding from ONR’s Secretary of
the Navy grant to James J. O’Brien.

REFERENCES
Ahrens, C. D., 1998: Essentials of Meteorology.

Wadsworth, 444 pp.
Anthes, R. A., 1982: Tropical Cyclones: Their Evolution,

Structure and Effects. Amer. Meteor. Soc., 208 pp.
Bliven, L. F., H. Branger, P. W. Sobieski, and J.-P.

Giovanageli, 1993: An analysis of scatterometer re-

turns from a water agitated by artificial rain. Int. J.
Remote Sens., 14, 2315–2329.

Bourassa, M. A., M. H. Freilich, D. M. Legler, W. T. Liu,
and J. J. O’Brien, 1997: Wind observations from new
satellite and research vessels agree. Eos, Trans. Amer.
Geophys. Union, 78, 597–602.

——, D. M. Legler, J. J. O’Brien, and S. R. Smith, 2002:
SeaWinds validation with research vessels. J.
Geophys. Res., in press.

Carlson, T. N., 1969: Synoptic histories of three African
disturbances that developed into Atlantic hurricanes.
Mon. Wea. Rev., 97, 256–276.

Dvorak, V. F., 1975: Tropical cyclone intensity analysis
and forecasting from satellite imagery. Mon. Wea.
Rev., 103, 420–430.

——, 1984: Tropical cyclone intensity analysis using sat-
ellite data. NOAA Tech. Rep. NESDIS 11, 47 pp.

Frank, N. L., 1971: Atlantic tropical systems of 1970.
Mon. Wea. Rev., 99, 281–285.

Hsu, C. A., and W. T. Liu, 1996: Wind and pressure
fields near tropical cyclone Oliver derived from
scatterometer observations. J. Geophys. Res., 101
(D12), 17 021–17 027.

Huddleston, J. N., and B. W. Stiles, 2000: A multidi-
mensional histogram rain-flagging technique
for SeaWinds on QuikSCAT. Proc. IEEE Geoscience
and Remote Sensing Symp., Honolulu, HI, IEEE,
1024–1026.

Katsaros, K. B., E. B. Forde, P. Chang, and W. T. Liu,
2001: QuikSCAT’s SeaWinds facilitates early iden-
tification of tropical depressions in 1999 hurricane
season. Geophys. Res. Lett., 28, 1043–1046.

Liu, K. S., and J. C. L. Chan, 1999: Size of tropical cy-
clones as inferred from ERS-1 and ERS-2 data. Mon.
Wea. Rev., 127, 2992–3001.

Liu, W. T., and W. Tang, 1996: Equivalent neutral wind.
JPL Publication 96-17, Jet Propulsion Laboratory,
Pasadena, CA, 16 pp.

Moore, R. K., D. Chatterjee, and S. Taherion, 1999:
Algorithm for correcting Spaceborne wind-vector
scatterometers for rain attenuation. 26th General
Assembly of the International Union of Radio Science,
Toronto, Canada, NRC, IEEE, URSI.

Naderi, F. M., M. H. Freilich, and D. G. Long, 1991:
Spaceborne radar measurements of wind velocity
over the ocean—An overview of the NSCAT
scatterometer system. Proc. IEEE, 79, 850–866.

NHC, cited 2001: Preliminary report for the 1999 sea-
son. [Available online at http://www.nhc.noaa.gov/
pastall.html.]

Shaffer, S. J., R. S. Dunbar, S. V. Hsaio, and D. G. Long,
1991: A median-filter-based ambiguity removal al-



889JUNE 2002AMERICAN METEOROLOGICAL SOCIETY |

gorithm for NSCAT. IEEE Trans. Geosci. Remote
Sens., 29, 167–174.

Sobieski, P., and L. F. Bliven, 1995: Analysis of high
speed images of raindrop splash products and Ku-
band scatterometer returns. Int. J. Remote Sens., 16,
2721–2726.

——, C. Craeye, and L. F. Bliven, 1999: Scatterometric
signatures of multivariate drop impacts on fresh and
salt water surfaces. Int. J. Remote Sens., 20, 2149–
2166.

Stiles, B., and S. Yueh, 2002: Impact of rain on
spaceborne Ku-band wind scatterometer data. IEEE
Trans. Geosci. Remote Sens., in press.

Tuttle, J., and R. Gall, 1999: A single-radar technique for
estimating the winds in tropical cyclones. Bull. Amer.
Meteor. Soc., 80, 653–668.

Verschell, M. A., M. A. Bourassa, D. E. Weissman, and
J. J. O’Brien, 1999: Model validation of the NASA
scatterometer winds. J. Geophys. Res., 104, 11 359–
11 374.

Weissman, D. E., M. A. Bourassa, and J. Tongue, 2002:
Effects of rain rate and wind magnitude on SeaWinds
scatterometer wind speed errors. J. Atmos. Oceanic
Technol., 19, 738–746.

Wentz, F. J., and D. K. Smith, 1999: A model function
for the ocean-normalized radar cross section at 14
GHz derived from NSCAT observations. J. Geophys.
Res., 104, 11 499–11 514.


